Copied to
clipboard

G = C42.221D4order 128 = 27

203rd non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.221D4, C42.337C23, (C4×D8)⋊3C2, (C2×C4)⋊11D8, (C4×C8)⋊7C22, C4.71(C2×D8), D41(C4○D4), C42(C4⋊D8), C4⋊D846C2, C4⋊C859C22, (C4×D4)⋊5C22, C4⋊Q857C22, C42(C22⋊D8), C22⋊D836C2, C2.9(C22×D8), C42(D4⋊Q8), D4⋊Q849C2, C4⋊C4.53C23, C22.22(C2×D8), C2.D856C22, C41D434C22, (C2×C4).298C24, (C2×C8).146C23, C23.666(C2×D4), (C22×C4).801D4, D4⋊C467C22, (C2×D4).400C23, (C2×D8).121C22, C42(C22.D8), C22.D838C2, C42.12C425C2, C4⋊D4.158C22, C22⋊C8.173C22, (C2×C42).825C22, C22.26C244C2, C22.558(C22×D4), C2.25(D8⋊C22), (C22×C4).1014C23, (C22×D4).572C22, C2.99(C22.19C24), (C2×C4×D4)⋊62C2, (C2×C4)(D4⋊Q8), C4.183(C2×C4○D4), (C2×C4).1579(C2×D4), (C2×C4⋊C4).930C22, SmallGroup(128,1832)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.221D4
C1C2C4C2×C4C42C4×D4C2×C4×D4 — C42.221D4
C1C2C2×C4 — C42.221D4
C1C2×C4C2×C42 — C42.221D4
C1C2C2C2×C4 — C42.221D4

Generators and relations for C42.221D4
 G = < a,b,c,d | a4=b4=d2=1, c4=a2, ab=ba, cac-1=a-1b2, dad=ab2, bc=cb, dbd=a2b, dcd=a2c3 >

Subgroups: 532 in 246 conjugacy classes, 98 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C2.D8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C4×D4, C4⋊D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C2×D8, C23×C4, C22×D4, C2×C4○D4, C42.12C4, C4×D8, C22⋊D8, C4⋊D8, D4⋊Q8, C22.D8, C2×C4×D4, C22.26C24, C42.221D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C24, C2×D8, C22×D4, C2×C4○D4, C22.19C24, C22×D8, D8⋊C22, C42.221D4

Smallest permutation representation of C42.221D4
On 32 points
Generators in S32
(1 29 5 25)(2 8 6 4)(3 31 7 27)(9 17 13 21)(10 16 14 12)(11 19 15 23)(18 24 22 20)(26 32 30 28)
(1 11 27 17)(2 12 28 18)(3 13 29 19)(4 14 30 20)(5 15 31 21)(6 16 32 22)(7 9 25 23)(8 10 26 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 32)(8 31)(9 18)(10 17)(11 24)(12 23)(13 22)(14 21)(15 20)(16 19)

G:=sub<Sym(32)| (1,29,5,25)(2,8,6,4)(3,31,7,27)(9,17,13,21)(10,16,14,12)(11,19,15,23)(18,24,22,20)(26,32,30,28), (1,11,27,17)(2,12,28,18)(3,13,29,19)(4,14,30,20)(5,15,31,21)(6,16,32,22)(7,9,25,23)(8,10,26,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,32)(8,31)(9,18)(10,17)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19)>;

G:=Group( (1,29,5,25)(2,8,6,4)(3,31,7,27)(9,17,13,21)(10,16,14,12)(11,19,15,23)(18,24,22,20)(26,32,30,28), (1,11,27,17)(2,12,28,18)(3,13,29,19)(4,14,30,20)(5,15,31,21)(6,16,32,22)(7,9,25,23)(8,10,26,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,32)(8,31)(9,18)(10,17)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19) );

G=PermutationGroup([[(1,29,5,25),(2,8,6,4),(3,31,7,27),(9,17,13,21),(10,16,14,12),(11,19,15,23),(18,24,22,20),(26,32,30,28)], [(1,11,27,17),(2,12,28,18),(3,13,29,19),(4,14,30,20),(5,15,31,21),(6,16,32,22),(7,9,25,23),(8,10,26,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,32),(8,31),(9,18),(10,17),(11,24),(12,23),(13,22),(14,21),(15,20),(16,19)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E···4J4K···4P4Q4R8A···8H
order12222222222244444···44···4448···8
size11112244448811112···24···4884···4

38 irreducible representations

dim11111111122224
type++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D8C4○D4D8⋊C22
kernelC42.221D4C42.12C4C4×D8C22⋊D8C4⋊D8D4⋊Q8C22.D8C2×C4×D4C22.26C24C42C22×C4C2×C4D4C2
# reps11422221122882

Matrix representation of C42.221D4 in GL4(𝔽17) generated by

1000
01600
0001
00160
,
4000
0400
0001
00160
,
01600
1000
00314
0033
,
0100
1000
00314
001414
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[4,0,0,0,0,4,0,0,0,0,0,16,0,0,1,0],[0,1,0,0,16,0,0,0,0,0,3,3,0,0,14,3],[0,1,0,0,1,0,0,0,0,0,3,14,0,0,14,14] >;

C42.221D4 in GAP, Magma, Sage, TeX

C_4^2._{221}D_4
% in TeX

G:=Group("C4^2.221D4");
// GroupNames label

G:=SmallGroup(128,1832);
// by ID

G=gap.SmallGroup(128,1832);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,80,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=a^2*c^3>;
// generators/relations

׿
×
𝔽